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SUMMARY

The design approach chosen for the electron guns in this study involves the
use of partial magnetic flux threading of the cathode. The magnetic flux threading
of the cathode allows the use of higher magnetic focusing field and preserves the beam
diameter between two modes of operation. The rms value of the periodic magnetic
focusing field had to be limited to 1.35 times the Brillouin value to avoid excess ro-
tational energy of electrons at the beam edge in the field reversal regions.

e o Sl gk 3

Two gun types are under study. One gun uses a single control grid and pro-
duces a solid beam in both the high and low current modes of operation. In the se-
cond gun, two control grids are used to produce a solid beam in the high current
mode, and a hollow beam in the low current mode.

-

The computer design of the first gun and its magnetic focusing system is com-
pleted. An experimental gun has been evaluated in the beam analyzer.

The feasibility of producing and focusing the beam in the second gun has been
proven by computer analyses. The details of the double grid system is still under
evaluation. A hollow beam will initially be generated experimentally with a non-
emissive button in the center part of the cathode. The stability of this beam will be
explored under PPM focusing condition before the final design of the complex control
grid system.
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1. INTRODUCTION

The objective of this program is to develop, fabricate and evaluate an advan-
ced non-intercepting gridded gun design for dual-mode traveling wave tube (TWT) ap-
plication. The program is expected to demonstrate that the performance objectives
have been achieved by testing the electron beam in an actual TWT under rf drive.

In a traveling wave tube, the beam voltage is determined by the required
synchronization between the electrons and the electromagnetic wave propagation on
the circuit. Changes in the beam power for dual-mode operation must therefore
be accomplished by changes in the beam current. The changes in the beam current
also affect gain and efficiency. The electrostatic beam diameter produced by a grid-
ded gun will decrease as the grid voltage is decreased for lower beam current. A
reduction in the beam diameter will cause a reduction in the interaction impedance.
Since gain is proportional to the one-third power of the interaction impedance, this
will accentuate the gain difference between the two modes of operation, in addition
to the decrease in the beam current.

The design approach chosen for this study involves the use of magnetic flux
in the cathode region. The electron trajectories will tend to follow the magnetic
flux lines. It can be seen from Figure 1 that with partial magnetic flux threading
of the cathode the beam diameter is better preserved in the lower power mode. For
a current pulse-up ratio of 3:1 and a magnetic focusing field of 1.35 times the Bril-
louin field (Bg,) the ratio between mean diameters in the two modes is 0.89. It is
desirable to keep the normalized average rotational energy to 0.1 or less. Figure
2 shows the restrictions placed on the amount of focusing field used to minimize the
effect of high rotational energy in the field reversal region.

Two design approaches were chosen as a result of a small-signal gain analysis
using different current density distributions in the beam. In one approach a solid
beam is produced in the two modes of operation by using a single control grid. Mag-
netic flux threading of the cathode was used to minimize the reduction of the beam
diameter between high- and low- current modes of operation.

In the second approach, two control grids are used to produce a solid beam
in the high-current mode and a hollow beam in the low-current mode. The hollow
beam is generated by elimination of current in the center core of the solid beam.
Magnetic flux threading of the cathode will also be used for this gun in order to mini-
mize the change of the outer diameter, and to prevent the collapse of the hollow low-
current mode beam.
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Figure 1. Relative Flux Threading of the Cathode, and Ratios of cw
and Pulse Mode Beam Diameters vs the Ratio of the RMS
Focusing Field and the Brillouin Field.




A gun producing the solid cw beam has been fabricated and evaluated in a
beam analyzer. The hollow cw beam case has not yet been tested experimentally.
A step-by-step approach was selected to better study the stability of the hollow beam.
The hollow beam will first be generated with the simplest possible gun configuration.
The complex grid structure will be substituted with a focus electrode to minimize
beam distortion. The hollow beam will be obtained with a non-emissive button on
the cathode. The initial test will be performed using a solenoid-focusing field. The
stability and behavior of the hollow beam in a solenoid-focusing field is known from
several existing electron guns. This test result will then establish a standard for
comparision with PPM focused beams.

The hollow beam will subsequently be tested in a PPM field. The effect of
high rotational energy in the field~reversal region will be studied. From Figure 2
it can be seen that the ratio of the rms focusing field and the Brillioun field

(Brms/Bpr) should not exceed 2.0 for a microperveance of 0.5 to obtain a normalized
rotational energy of 0.1 or less.
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2. SELECTION OF BEAM PARAMETERS

In order to determine the helix parameters, a small-signal computer program
was used which takes into account the effect on the space charge waves of flux thread-
ing the cathode. It was assumed that a nondispersive velocity characteristic could
be obtained by suitably loading the helix with longitudinal vane segments attached to
the inside of the barrel. From cold test data on similar circuits, it was determined
how much the interaction impedance would be reduced by such loading. This reduc-
tion in the interaction impedance was taken into account in the calculations.

From several trials it was found that maximum gain flatness was obtained for
a ratio of beam diameter to inside helix diameter of 0.6. It was also found that a
uniform output helix would not give the required wideband efficiency, so the phase
velocity was reduced near the end of the output helix. A 5 percent phase velocity
step led to the most satisfactory small-signal gain performance.

Three cases were computed to show the effects of various approaches in beam
design. First the case of no-flux through the cathode was analyzed. For comparison
the computed small signal gain vs. frequency response is shown in Figure 3. Since
the beam diameter varies by a factor of 1.7 between the low-current and high-cur-
rent modes the change in gain is substantial. If the low-current mode gain were to
be 30 dB minimum, the gain change would be about 52 dB at midband. The very high
gains in the pulse mode would obviously result in stability problems, both from
backward-wave oscillation and internal feedback. In addition, the gain variation over
the band is about 20 dB in the high-current mode.

Next, if 67 percent of the magnetic flux in the beam is allowed to thread the
cathode, the change in beam diameters between the low- and high- current modes is
only 1.14. The small-signal gain characteristics are shown in Figure 4 for the case
of both beams being solid. In this case, the difference in mid-band gain is 36 dB and
the gain variation over the band is less than 13 dB, when the low current gain is 30
dB minimum,

Finally, a calculation was made considering the cw beam to be hollow. Re- E
sults for this case are shown in Figure 5. Because of higher interaction impedance
of the hollow beam, the gain change between modes is less than 25 dB, and the gain
variation over the band is less than 11.5 dB. The gain is also nearly balanced at
the band edges for both modes.
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3. DESIGN OF ELECTROSTATIC BEAM

A computer analysis was made using Varian's gun simulation program. For
convenience in comparison of results the scale factor of the guns was such that the
active cathode diameter was 1.0 in. The electron beam was injected with uniform
current density into the plane of the control grid with the appropriate currents for
the two operating modes. The 15 reference electrons used in the analysis are launch-
ed perpendicular to the grid. Distortion in beam optics produced within the indivi-
dual grid cells is neglected in this preliminary analysis. The formation of the beam-
lets within the individual grid cells was the subject of a separate computer study.

Three area convergences of 4:1, 6.5:1, and 10:1 in the high-current mode
were selected for this analysis. The radius of curvature of the control grid was
adjusted for good laminarity in the high-current mode. When the area convergence
of the gun increased, the separation increased between the beam minimums for the
two operating modes. This separation will contribute to scalloping when the two
operating beams are focused with the same magnetic field.

A detailed computer analysis was made to determine the proper grid cell geo-
metry to minimize electron cross-~over within the grid structure. Two control grids
in addition to the focus grid are required, when the low-current mode beam is hollow,
This case required a fairly extensive study. It showed that the formation of the beam-
lets within the grid cells is fairly sensitive to the grid thickness and to the spacing
between the two control grids. In general, the smallest lens effect and the best opti-
cal performance is obtained for the smallest grid thickness and spacing. A grid
thickness of .003 in. and a spacing of .005 in. was selected to assure mechanical
rigidity.

When the beam was solid in the low-current mode, only one control grid was
required. Beam distortion in this case was minimal.
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4. DESIGN OF MAGNETIC FOCUSING SYSTEM

4.1 RMS MAGNETIC FIELD ANALYSIS

As mentioned in the previous section, three area convergences were chosen
for this analysis, 4:1, 6.5:1, and 10:1. To ensure a normalized rotational energy
level ot 0.1 or less, the selected RMS focusing field of the beam was 1,3 times the
Brillouin value. This requires that about 64 percent of the RMS magnetic flux in
the beam threads the cathode, (See Figure 1.) The shaping of the magnetic field in
the gun region was pertormed for minimal scalloping of the beam in the focusing
diameter in the low-current mode
resulted in a ratio of the high-
el f The ratic of the beam diameter
ondition was approximately 0.5,

I'C"l(‘l"‘ ToOY the L.,,,.";" rrent mode. EJ;A‘:‘& 2 and 9 show o« omputer clmu laticns witi

As expected, the beam with the 4:1 area convergence had the least amount ot
scalloping in either operating mode. This beam was then selected for further inves-
tigation. The slope of the magnetic field in the gun region was varied as shown in
Figure 10.

The electrostatic beam minimum of the high-current mode occurred at a dis-
tance 1.675 in. away from the cathode. The various magnetic slopes with their field
value at this point are referenced in Figures 11 and 12. Maximum beam excursions
for the two modes of operation vs percent magnetic field at 1.675 in. away from the
cathode are plotted in Figure 11. When the two operating beams were focused with
the same magnetic field, it was apparent that only one could be favored for optimum
performance. The best magnetic slope would be one producing an equal maximum
beam excursion of the two beams. This resultant magnetic slope is labeled '"R" in
Figure 10, Figure 12 is a plot of the ratio of the maximum beam diameters for the
two operating modes vs percent magnetic field at 1.675 in away from the cathode. A
larger maximum beam excursion corresponds to a larger amount of scalloping. The
magnetic resultant-slope R produced 7 percent scalloping in the high-current mode
and 22,5 percent in the low~current mode. A similar analysis was performed when
the low-current mode beam was hollow. In this case the R-slope produced 10 per-
cent scalloping.

4.2 PPM MAGNETIC FIELD ANALYSIS

A PPM magnetic field profile was constructed on the basis of the result in the
RMS magnetic field study. The ratio of the plasma wavelength and magnet period
was 3.1 for the high-current mode and 5.4 for the low-current mode, which are
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MAXIMUM BEAM RADIUS
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t
Figure 11. Maximum Beam Excursions for High- and Low-Current

Mode of Operation vs Percent Magnetic Field, z = 1.675,

Electrostatic Pulse Beam Min.
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Figure 12. Ratios of Maximum and Minimum Beam Excursion for High-
and Low-Current Mode of Operation vs Percent Magnetic
z = 1,675 Electrostatic Pulse Beam Min.
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acceptable values for good focusing. Figure 13 is a computer simulation of the high-
current mode beam in a PPM field. Since the slope of the magnetic field in the gun
area had been determined in the previous study, the only parameter varied was the
length of the axial extension of the first half-period. The location of first magnetic
field reversal with respect to the beam minimum of the high-current mode was lo-
cated. The field shapes used for the computer simulation were plotted in Figure 14,
with the corresponding results in Figure 15. The effect of the variation in the axial
extension of the first half-period was minimal. The scalloping of the outer edge
electrons was low in all three cases. The high-current mode had, according to the
computer prediction, less than 6 percent scalloping. The solid low-current mode
beam had 16 percent, and the hollow beam, 14 percent. The velocity spread between
the outside and inside beam trajectory was also quite acceptable.

4.3 MAGNETIC CIRCUIT DESIGN

A computer program solving LaPlace's equation was used to design the mag-
netic circuit needed for the PPM field. The design of the individual magnets and
polepieces was made in accordance with Sterret and Heffner; "Design of Periodic
Magnet Focusing Structures', 1 The design of the PPM focusing system is shown in
Figure 16. The large hole diameter in the gun polepiece and the radially magnetized
magnet are the principal elements providing the flux threading of the cathode region,

An actual magnetic circuit was designed based on this information. Experi-

ments to duplicate the PPM goal curve were performed, With some minor correction,

the goal was very nearly duplicated and the slope of the magnetic field in the cathode
region matched fairly well. The axial extension of the first half-period was approxi-
mately 0.1 in larger than originally planned. This magnetic field was used in the
gun simulation program to confirm the beam shape. The scalloping of the beam in
both high~ and low current mode was acceptable.

1. IRE Transactions on electron devices, January 1958.
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5. GUN STRUCTURE, SOLID CW BEAM

There were no real problems in fabrication and assembly of the gun structure.
As mentioned previously, the gun is a non-intercepting gridded gun. The gun contains
two sets of grids with a transparency of 80 percent. The grid closest to the cathode
operates at cathode potential and prevents electron emission from areas of the cathode
covered by the grid vanes of both grids. The second grid is used for control of the
beam current.

The first grid was placed directly in contact with the cathode and is operating
at approximately cathode temperature. This eliminates the assembly problems as-
sociated with the close spacing between the cathode and shadow grid in the conven-
tional non~intercepting gun. In addition, a significant improvement is obtained in
the electron optical performance of the gun because the focusing grid operates at
close to cathode temperature. Since electron emission must be inhibited from the
grid vanes, the focus grid was coated with a thin layer of zirconium to inhibit grid
emission,
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6. BEAM ANALYZER TESTS

6.1 ELECTROSTATIC BEAM

The gun with the single control grid that produces a solid low~current mode
beam was tested in the beam analyzer under electrostatic conditions. The results
of the tests are shown in Figure 17 through 20. The results are in fairly good agree-
ment with the computer analysis. The beam analyzer showed a laminar beam pro-
file with a minimum beam diameter in the high-current mode of 0,132 in (the desired
beam diameter is 0.130 in). Grid interception in the pulse mode, with 220 volts
applied to the grid was 3.6 mA., corresponding to 0.3 percent grid interception.

The beam was also studied at microperveance of 0.3, corresponding to a
ratio in power of 10:1. As excepted, the ratio between the two electrostatic beam
diameters was great. This perveance will also be examined with magnetic field
after a small adjustment in the magnetic field is made.

6.2 CONFINED FLOW BEAM

The first test of the gun producing a solid low current mode beam was com-
pleted. A spiraling of the beam was experienced, due to localized saturation of the
iron polepiece outside the gun envelope by the radially magnetized Samarium cobalt
magnet. This magnet consists of six radially magnetized segments and is used for
the proper shaping of the magnetic field in the gun region. The strength of this
magnet is adjusted by varying the number of the segments. It turned out that only
one segment was needed to obtain the correct field variation on the axis. The pole-
piece saturated in the vicinity of the magnet producing large asymmetry in the
magnetic field, causing the electron beam to spiral. A new design of the magnetic
circuit surrounding the gun with an improved polepiece was designed and fabricated
and the beam analyzer tests will be resumed.
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Beam Analyzer Result of Electrostatic Beam -
High-Current Mode (uk = 1.5).
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BASE UNITS:
_ Quantity
length
mass
time

electric current
thermodynamic temperature
amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:
Acceleration

activity (of a radioactive source)

angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

SI PREFIXES:

METRIC SYSTEM

Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

__Multiplication Factors

1 000 000 000 000 = 10'?
1 000 000 006 = 10*

1000 000 = 10*
1000 = 10
100 = 10?

10 = 10!

0.1 =10
001 =102
0001 = 10—

0000001 = 10~
0.000 000 001 = 10~
0.000 000 000 001 = 10- 12

0.000 000 000 000 001 - 10~ 14
0.000 000 000 000 000 001 {1} agbl

* To be avoided where possible
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SI Symbol

Prefix

tora
Rige
megs
kilo
hecto*
deks*
deci*
contf*
milli
micro
nano
pico
femto
atto

_Formula

m/s
(disintegration)/s
rad’s
rad/s
m
kg/m
A-sV
AN
V/im
V.s'A
WA
VIA
WIA
N'm
HLS
kg-m's
{cycleys
Im/m
cd/'m
cd-sr
A/m
Vs
Wb/m
Jis
N'm
A's
N-m
Wisr
Jkg-K
N/m
W/m.K
m's
Pe's
m/s
WIA

m
(wave)m
N-m
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MISSION
of
Rome Avr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and cosmunications
(c3) activities, and in the C3 areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and coatrol,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology.,
ionosphexic propagation, solid state sciences, microvave
physics and electronic reliability, maintainability and
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